معلومات حول الترانسستوروكوناته وعمله

تميمي نت موقع صديق
الهندسي العراقي
الهندسي العراقي
كلية الهندسة
بسم الله الرحمن الرحيم
والصلاة والسلام عليك ياسيدى يارسول الله
فكرت كثيرا فى ان بعض اخواننا المسلمين لديهم فكرة بسيطه عن الالكترونات فهدانى الله الى ان اجمع اهم الموضوعات عندى والتى جمعتها من المنتديات والمواقع المختلفه كى يستفيد منها كل من يتابع موضوع شاشات الكمبيوتر
والله ولى التوفيق
الجهد الكهربائي (ج) ، وحدة القياس ( ف(
- التيار الكهربائي (ت) ، وحدة القياس (أمبير)
- المقاومة (م) وحدة القياس (آوم(
- القدرة الكهربائية (ق) ، وحدة القياس (واط (


الجهد الكهربائي (المستمر(
يتكون الجهد الكهربائي أو فرق الجهد إذا كانت هناك شحنات مختلفة قطبيا ، أي سالب وموجب ، وبذلك ينشأ جاذبية بين الشحنات المختلفة قطبيا ، كما ينشا تنافر بين الشحنات المتساوية قطبيا . وتزيد قيمة الجهد الكهربائي كلما زاد فرق الشحنات . علامة الجهد (ج) و وحدة قياسه فولت نسبة للعالم الإيطالي اللسندرو فولتا (1745 - 1827) ، ويقاس الجهد الكهربائي بجهاز قياس الجهد الفولت متر .

التيار الكهربائي (المستمر(
الجهد هو سبب التيار الكهربائي ودون الجهد لا يتكون تيار كهربائي . وإذا تكون جهد بين نقطتين مختلفتين في قطبية الشحنة فتشأ ضرورة للتساوي . يجري التيار الكهربائي في الدارة الكهربائية المغـلقة من القطب السالب إلى الموجب . ويسري بين المولد والمستهلك الكهربائي والأسلاك بينهم . وبالمفتاح الكهربائي يمكن قطع الدارة الكهربائية وبالتالي مجرى التيار ، أو إغلاق الدارة وبالتالي يسري التيار . علامة التيار (ت) ووحدة قياسه أمبير نسبة للعالم الفرنسي اندري أمبير (1775ــ 18836) ، ويقاس التيار الكهربائي بجهاز قياس التيار الأمبير متر .





المقاومة الكهربائية

المقاومة الكهربائية هي القوى التي تقاوم التيار الكهربائي . ونوعية المادة في المقاومة الكهربائية هي التي تحدد مدى وقدرة مقاومة التيار الكهربائي . علامة المقاومة (م) ووحدة القياس آوم نسبة للعالم الألماني (جيورج سيمون آوم (1785 - 1889) . وتقاس المقاومة الكهربائية بجهاز الآوم متر.



القدرة الكهربائية
القدرة الكهربائية أو اللإستطاعة الكهربائية هي المقياس لمجموع حاصل ضرب الجهد بالتيار (حسابيا) في وحدة زمنية ( في الثانية)، العلامة (ق) الوحدة القياسية واط نسبة للعالم الإنكليزي جمس واط (1736 - 1819) .
الان نتعرف على اهم المكونات الالكترونيه المستخدمه فى الدوائر المختلفه مثل :-
1-الموحدات Diode
2-الترانزستورات Transistor
3-المقاومات
4-الملفات
5-المحولات
6-المرحلات (ريلاى)
7-








اولا الموحدات
وجد أن عندما يتم وضع شريحة سلكونية موجبة p-type .. وشريحة سالبة n-type فأن التيار الكهربائي سيمر في جهة واحده فقط عبر الشريحتين .. لتشكر عنصر الكتروني يسمي الدايود او الموحد Diode .. وهو العنصر الأهم والأشهر في عالم أشباه الموصلات semiconductor
يمكن لشريحة سليكون موجبه p-type .. مع شريحة سالبة n-type ان تعمل كأي موصل للتيار الكهربائي
تطلق على حركة التيار من الشريحة الموجبة إلى السالبة بأسم الانحياز الأمامي او forward biased .. في هذه الحالة يعمل الدايود كأي موصل جيد للتيار ..
اما حالة عدم التوصيل اي جهد موجب على الشريحة السالبة .. وسالب على الشريحة الموجبة .. فهذا ما يسمى reverse biased .

يوجد فرق جهد صغير على طرفي الدايود 0.6 فولت للدايود المصنوع من مادة السليكون Si .. وتقريبا 0,3 للمصنوع من مادة الجرمانيم ..
يمكن استخدام هذا الجهد الصغير لاختبار وفحص دائرة الكترونية موصله بالمصدر وتحتوي على موحدات .. فإذا كان الدايود المفحوص سليم فانه سيعطي جهد صغير بين أطرافه في حالة التوصيل بالانحياز الأمامي..
اما إذا أعطى قيمه جهد أعلى من 1 فولت او 0 فولت فهذا يعنى أن هذا الدايود تالف.

يتم تشبيه عمل الدايود كحنفية ماء تسمح بالمرور في جهة واحده فقط .. ولهذا تم استغلال هذه الخاصية المتميزة لإنشاء الكثير من التطبيقات المفيدة ..
احد اشهر هذه التطبيقات .. هي تحويل التيار المتردد (AC) والتي تتغير قطبيتة باستمرار إلى تيار مستمر (DC) أحادي القطبية ..
كل مصادر الطاقة في المنازل تعطي تيار متردد بينما البطاريات تزودنا بالتيار المستمر ..
وعملية التحويل التي تتم لاستبدال التيار المتذبذب إلى تيار مستمر .. تسمي تقويم او rectification
الصورة التالية توضح الإشارة الداخلة والخارجة من الدايود .. وهذه الطريقة في التقويم تسمى تقويم نصف موجه لانها تقوم بإخراج نصف الموجه الاصليه .. وإلغاء " Block " للنصف الأخر ..

أما الطريقة الثانية والأكثر كفاءة والتي تستفيد من كامل الإشارة المتردد الداخلة هي دائرة تقويم موجه كاملة والصورة توضح طريقة القنطرة Bridge " أربع موحدات " للحصول على النتيجة المطلوبة ..




بأستخدام الخاصية المعروفه للدايود او الثنائي والتي يسمح فيها بمرور التيار بأتجاه واحد فقط ..



ثانيا:-
الترانزستور Transistor
الترانزستور هو أهم عنصر فى عالم الإلكترونيات . حيث يمكن إستخدامه كمكبر Amplifier للإشارة وأيضا يمكن إستخدامه كمفتاح Switch ( فهو بذلك يعتبر وحدة بناء الحاسب الأساسية).
ويوجد تصنيفان للترانزستر وهما :
1- Bipolar Junction Transistor
ويطلق عليه أختصارا BJT والكلمة معناها أن كلا من الإلكترونات والفجوات holes تستخدم كحاملات للتيار .
عندما تزيد درجة حرارة المادة عن الصفر المطلق (-273 سليزيوس) تكتسب إلكترونات المادة طاقة تجعلها تترك الذرات وتخلف مكانها ما يعرف بالفجوات Holes وينطلق كل إلكترون إلى فجوة أخرى تاركا مكانه فجوة
وهذا النوع أيضا يعتبر من العناصر الذى يتحكم فيها بواسطة تيار الدخل Current Controlled أى أن تيار الخرج يعتمد على تيار الدخل.
2- Unipolar Junction Transistor
ويطلق عليه أيضا FET إختصارا لـField Effect Transistor أى أن التيار المار خلاله يتحكم فيه بالجهد المسلط على البوابة gate (أحد أطراف التوفيه تكون الإلكترونات أو الفجوات (أحدهما) هى حاملة التيار.
أولا : Bipolar Junction Transistor :
هذا النوع له ثلاثة أطراف :
1- القاعدة Base
2- المجمع Collector
3- الباعث Emitter
وعندما يتركب هذا الترانزستور من طبقة من مادة من نوع P محاطة بطبقتين من النوع n (كما بالشكل التالى ) يطلق عليه أسم (ترانزستور NPN)
يمكن الحصول على مواد من نوعى n و p بإضافة شوائب إلى مواد أشباه الموصلات
* الشكل "--" يرمز للإلكترونات و الشكل "oo" يرمز للفجوات(1).

والطبقات الثلاثة الشبه موصلة تتصرف كموحدين متعاكسين (2)
أما الجزء (3) فيظهر فيه شكل الترانزستور من نوع BJT كما يظهر فى مخططات الدارات ويرمز السهم المتجه للخارج إلى كون هذا الترانزستور NPN ويشير إلى اتجاه التيار التقليدى فيه .
أما الشكل التالى فيوضح ترانزستور من نوع PNP حيث توضع طبقة من نوع n بين طبقتين من نوع p فى (1) ويمكن إعتبارها كترانستوران متصلان وجها لوجه (2) ويوضح السهم الداخل فى رمز الترانزستور مسار التيار التقليدى (3)

وتعتبر ترانزستورات السليكون (المادة الشبه موصلة بها هى السليكون) أفضل من مثيلاتها المصنوعة من الجيرمانيوم حيث يمكنها العمل فى درجات حرارة وجهود وترددات أعلى ومعدل تسريب التيار به أقل.
ترانزستور BJT كمكبر :
إذا أوصلنا بطارية بين القاعدة Base والباعث Emtter فى ترانزستور NPN سيمر تيار (يسمى تيار القاعدة) من البطارية إلى الباعث من خلال موحد القاعدة السفلى.

ولكن من خواص الموحد أنه لن يمرر التيار إلا إذا كان فرق الجهد عليه (بين القاعدة والباعث) كبر من جهد يسمى barrier voltage وهو فى حالة السليكون يساوى 0.7 فولت.
لذا يمكننا حساب التيار الذى سيمر فى مقاومة القاعدة بالحسابات التالية :



لاحظ أن مقاومة القاعدة فائدتها ترشيد التيار المار خلال الترانزستور لأنه لو كان كبيرا سيدمر الترانزستور.
والأن لنتخير دارة أخرى :

لن يمر التيار فى هذه الدارة لأنها تحتوى على موحدين متعاكسين (لن يتحقق جهد الـbarrier لكليهما فى نفس الوقت)
وإذا ضممنا الدارتين سويا كما بالشكل التالى :

حيث المجمع Collector أعلى جهدا من جهد القاعدة base فإن التيار سيمر رغما عن الدايود العلوى (دايود المجمع)
وينشأ فى هذه الدارات ثلاث تيارات هم : تيار القاعدة Ib وتيار الباعث IE وتيار المجمع Ic
وحسب نص قانون كيرشوف (مجموع التيارات الخارجة سيساوى مجموع التيارات الداخلة للترانزستور)
إذا IE=Ib+Ic
كما يرتبط تيار القاعدة بتيار المجمع بالعلاقة
Ic=B*Ib
حيث B هى معامل التكبير (الكسب) للترانزستور وتسمى أحيانا hfe وقيمتها فى حدود 100-300

التوصيلة التى تكلمنا عليها والمبينة فى الشكل السابق تسمى وصلة الباعث المشترك Common-Emitter حيث الباعث موصل بالأرضى لكلا البطاريتين.
و يجب أن يكون VBB>VBE حتى يمرر موحد الباعث التيار . ويتم التحكم فى تيار القاعدة بتغيير المقاومة RB .
وعندما يتغير تيار القاعدة يتغير بالتبعية تيار المجمع بالقانون Ic=B*Ib
________________________________________
وبإعادة رسم الدارة باستخدام بطارية واحدة فيها بدلا من بطارتى Vcc و VBB تصبح على الشكل التالى :

حيث تم تمثيل مسار تيار القاعدة بالأسهم الزرقاء ومسار تيار المجمع بالأسهم الحمراء.
هكذا ببساطة يعمل الترانزستور كمفتاح وربما سنتطرق إلى التفاصيل فى وقت لاحق.
________________________________________
ترانزستور BJT كمفتاح :
حالة 1

فى الدارة السابقة قمنا بفرض بعض القيم لحساب جهد الخرج (جهد المجمع) VC حيث
IB هو تيار القاعدة
IC هو تيار المجمع
IE هو تيار الباعث
RB هو مقاومة القاعدة
RL هو مقاومة الحمل
VS هو جهد بطارية الدخل
VC هو جهد المجمع
VL هو جهد الحمل
وتتم الحسابات بالشكل التالى :

ومن الحسابات السابقة نجد أنه عندما يكون هناك تيار كافى عند قاعدة الترانزستور يكون الخرج Vc مساويا ل 2.5 فولت.
حالة 2
أما إذا فتحنا المفتاح الموجود عند القاعدة فسيكون تيار القاعدة مساويا للصفر

وبإجراء نفس الحسابات سنجد أن جهد الخرج سيصبح مساويا لجهد المصدر Vs.
ولاستخدام هذه الدارة كمفتاح يجب أن نختار مقاومة الحمل RL التى تضمن لنا وجود صفر فولت (تقريبا) عندما يمر التيار فى القاعدة . أما عندما لا يمر تيار فى القاعدة (كما فى الحالة الثانية) فإن جهد الخرج سيصل إلى قيمته القصوى وهو Vs.
وبذلك تتحقق لنا حالتين مختلفتين للخرج فنحصل بهما على مفتاح يمكن فتحه وغلقه لملايين المرات فى الثانية الواحدة بواسطة التحكم فى تيار القاعدة.
________________________________________
كما يمكن إستخدام أكثر من ترانزستور فى دارة واحدة تعمل كمفتاح كما بالشكل التالى :
حالة 1
عندما يكون المفتاح الموجود على القاعدة فى الحالة 1 فإن التيار يسرى إلى قاعدة الترانزستور T1 خلال مقاومة القاعدة R1 ويجعل الترانزستور T1 فى حالة تشغيل ON وبذلك فإن التيار Ic1 يمر خلال الترانزستور إلى الأرضى ويصبح الخرج = صفر فولت.
وهذا الخرج مرتبط بقاعدة الترانزستور الثانى الذى لا يمر بقاعدته تيار ويصبح الترانزستور T2 فى حالة قطع OFF ويصبح الخرج حينها مساويا لجهد التغذية +V
بالمثل يمكنك إستنتاج حالة الخرج عندما يكون المفتاح فى الحالة 2
هل يمكنك إستنتاج ميزة استخدام ترانزستورين معا كمفتاح عن إستخدام ترانزستور واحد ؟
________________________________________
فى الفقرات السابقة ناقشنا الترنزستور NPN (السهم خارج) . أما بالنسبة للترانزستور PNP فهو أقل إستخداما وهو يعمل مثل الترانزستور NPN تماما ولكن توصل به بطارية التغذية فى وضع معكوس مما يجعل التيار يمر فى إتجاه معكوس (من الباعث للمجمع).



كلاكيت ثانى مره
الترانزيستور
الترانزيستورات ثنائية القطبية
كما ذكر سابقا فهناك تصنيف عام لأنواع الترانزيستورات : أحادية القطبية (أُونيبولار) و ثنائية القطبية (ديبولار) :
(bipolar , unipolar)
وبداية سيعالج النوع الأكثر استعمالا وهو ثنائي القطبية . وهو مكون من ثلاثة طبقات ، وثنائي القطبية من جانبه ينقسم أيضا إلى نوعين ( آن بي آن ، وبي آن بي :
(NPN , PNP)
وقد تم شرح تصميمة والتفاعلات به في الدرس الثامن في "العناصر النصف موصلة" و"الاجتياز إيجابي - سلبي" .
و يصنع في الغالب من مادة السليكون وقليلا منه يصنع من مادة الجرمانيوم . وله ثلاثة وصلات معدنية موصله بطبقاته وتسمى هذه الوصلات:
المجمع (Collector)
المشع (Emitter)
القاعدة (Base)


















طريقة عمل الترانزيستور
وللتوضيح السهل لما يحدث داخل الترانزيستور :


للهويس درعين يعملا بتزامن واحد ، تسري المياه في مجرى المجمع في نفس وقت فتح مجرى القاعدة

تكمن أهمية الترانزيستور بأنه يعمل إما كمفتاح (صمام) يفتح ويغلق الدائرة الكهربائية ، أو إما كمبكر (مضخم) حيث يصل عامل تكبير التيار (h21e) في بعض أنواعه إلى ثلاثين ألف ضعف تيار القاعدة . وسنرى لاحقا ، كم تعدد وكثرة إمكانيات أتسغلال الترانزيستور .
تجربة : ترانزيستور كمفتاح
توصيل ترانزيستور NPN بمقاومة (100 آوم) وفانوس بمصدرين للجهد ، المصدر الأول (1,5 فولت) يتم توصيله بمجرى القاعدة - المشع (بالاتجاه أمامي أي وصلة موجب الجهد بوصلة المقاومة التي قبل القاعدة) ، ثم يتم توصيل مصدر الجهد الثاني (10 فولت) في دارة المجمع (وصلات السالب لمصدري الجهد توصل ببعض) ، ويتم توصيل الفانوس بين المجمع وبين مصدر الجهد الثاني .

انظر صورة الترانزستور كمفتاح
في هذه الحالة يضيء الفانوس . وإذا تغيرت قطبية الجهد الأول وهو في مجرى القاعدة - المشع (أي تبدلت وصلات الجهد الأول - الموجب بالسالب) فسيطفئ الفانوس . ولن يعمل ترانزيستور من نوع NPN بالاتجاه المعاكس .
ويعمل (أي يوصّل) ترانزيستورNPN إذا كانت قطبية القاعدة والمجمع إيجابية بالنسبة للمشع .
أما ترانزيستور PNP فهو يعمل إذا كانت قطبية القاعدة والمجمع سلبية بالنسبة للمشع .



التكبير
وأما عملية التكبير في الترانزيستور فهي تتم خلال توجيه تيار المجمع ، ولكي يوجه ترانزيستور ثنائي القطبية فمن الضروري أن يكون تيار كهربائي في القاعدة بالإضافة لجهد بين القاعدة والمشع (جهد الهويس) . ويوجه هذا الجهد سريان الشحنات من المشع إلى المجمع (باستثناء ضئيل جدا) .
أختبار "عامل تكبير التيار" في الترانزيستور
تجربة : الترانزيستور كمكبر
توصيل ترانزيستور بسيط من نوع :
(BCX 40أو BC 140 أو BC141)
بمصدر جهد مستمر ومتغير(أي مصدرين للجهد ، أنظر الشكل الترانزيستور كمكبر) ، وتم توصيل مقاومتان : واحدة بكيلو آوم والثانية معيّر مقاومة للقاعدة ، ومقياسان للأمبير : واحد في القاعدة ، والأمبير متر الثاني للمجمع ، كما يظهر في الشكل . وتتعيّر تجزئة الجهد بالمعيّر حتى تصل قيمة التيار إلى الصفر .
ثم يتم تعيير المقاومة المتغيرة حتى تصل قيمة تيار القاعدة 0,5 ميلي أمبير (أي نصف ميلي أمبير)
وعند قياس تيار المجمع في كلتى الحالتين فستجد أنه في الحالة الأولى لا يمر به تيار قط، حيث لا يمر التيار في المجمع دون التيار في القاعدة ، وفي الحالة الثانية ترتفع قيمة تيار المجمع بارتفاع قيمة التيار في القاعدة . وقد أدت قيمة 0,5 أمبير في القاعدة إلى ارتفاع قيمة تيار المجمع إلى 50 ميلي أمبير أي مائة ضعف .

Leave a Reply

Your email address will not be published. Required fields are marked *